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ABSTRACT

Blind source extraction (BSE) is an attractive approach to enhance
multichannel noisy speech data, as a preprocessing step for an au-
tomatic speech recognition system. BSE was successfully applied
to the first Chime Pascal Challenge for improving the recognition
rate of noisy commands in a small dictionary task. In this work we
reviewed the BSE architecture and improved each system block in
the framework in order to increase its flexibility and degree of blind-
ness. Two different algorithms are finally implemented to address
both Tracks of the 2nd Chime Challenge. To improve the overall
performance, the output of the enhancement algorithm is then com-
bined with robust ASR systems based on gammatone features anal-
ysis and on uncertainty decoding. Results obtained with different
front-end and back-end configurations demonstrate the advantages
of the proposed approaches.

Index Terms— multi-channel audio, source separation, robust
speech recognition, speech enhancement, uncertainty decoding,
gammatone features

1. INTRODUCTION

Voice-based human-machine interaction is attracting a lot of atten-
tion and significant results have been achieved in controlled condi-
tions. Nevertheless speech acquisition, processing and recognition
in non-ideal acoustic environments are still complex tasks [1][2].

The presence of environmental noise, reverberation and interfer-
ing speakers often causes a dramatic performance drop on automatic
speech recognition (ASR) systems. To improve ASR robustness,
different approaches have been widely investigated: spatial speech
processing [3][4][5][6], alternative acoustic features [7], model com-
pensation or adaptation [8, 9], uncertainty decoding [10] are popular
approaches proposed to tackle this problem. However, in order to
lead to effective solutions for real-world tasks, a careful combina-
tion of each single technique is necessary.

As such, in 2011 the first CHiME challenge considered the prob-
lem of recognizing speech in everyday noise situations. The 2nd
CHiME challenge [11] extends the difficulty of the recognition task
increasing the vocabulary size and introducing non-stationary mix-
ing conditions for the target speaker, i.e. the speaker is allowed to do
small movements.

In the former work [5] a complete system was proposed, which
was able to sensibly improve the recognition performance for the 1st
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CHiME challenge task. The system is based on the effective com-
bination of spatial processing based on the Blind Source Extraction
(BSE) and robust ASR exploiting robust feature analysis. In this
work 1 we revise and extend the original work in order to deal with
both Track 1 and Track 2 of the 2nd CHiME Challenge. By combin-
ing different processing stages the described algorithm is then able
to deal with both static and dynamic mixing conditions and is unsu-
pervised, i.e. it does not require any specific knowledge on the target
speaker other than the its direction. While the focus of this work is on
the description of each stage required to build the full BSE process-
ing, a detailed analysis is reported on the recognition performance
obtained using robust ASR strategies, such as gammatone features
or uncertainty decoding.

The article is organized as follows:

• Section 2 describes the general architecture of the BSE sys-
tem which includes as main blocks the spatial dictionary
learning, the constrained spatial filtering and the spectral
filtering, described in Section 3, 4, 5;

• Section 6 describes the back-end systems used for the ASR.

• Section 7 discusses the recognition performance obtained
combining different variants of the front-end and of the back-
end systems and using different acoustic models and datasets
in CHiME;

• concluding remarks end the discussion in Section 8.

2. BSE SYSTEM ARCHITECTURE

Although the BSE framework can be easily extended to a more gen-
eral multichannel case, to simplify the discussion and be more con-
sistent with the CHiME tasks we will explicitly refer to the case of
two microphones.

An unknown number of source signals are recorded by an array
of 2 microphones. We refer to the discrete time-frequency repre-
sentation of signals, obtained for example through the Short-time
Fourier Transform (STFT). Let Xm(k, l) indicate the l-th STFT
frame coefficients obtained for the k-th frequency bin for the m-th
mixture signal. For convenience of notation we indicate the vector
of signal mixtures as X(k, l) = [X1(k, l) X2(k, l)]

T .
For each frequency bin k the time series X(k, l) obtained with

all the incoming frames l represent the main input of a BSE system,
whose general structure is depicted in Figure 1. The first block at the
top of the chain has the goal to learn a dictionary of mixing systems
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Fig. 1. Architecture of BSE system

describing the propagation of a source in a specific location. The
mixing systems are related to the full echoic representation of the im-
pulse responses between each spatial location and each microphone
and represent a prior information used to constrain the subsequent
spatial filtering. Among all the estimated mixing systems the target
direction is used to select the one related to the wanted source. The
selected mixing system, indicated as Hprior(k), is used to constrain
an ICA adaptation [5] in order to estimate a demixing system able to
suppress the noise and preserve the target source signal. The stereo
signals for both noise and target source are recovered by applying
the Minimal Distortion Principle [12] to the estimated demixing ma-
trix. Signals are then reconstructed back to time-domain and the
noise and target signals are processed through a spectral filtering al-
gorithm, such as an adaptive Wiener filter. The spectral filtering is
applied to each channel separately using a time-frequency resolution
better suited for the single channel spectral processing. Finally, the
enhanced target signals are combined together into a single chan-
nel through a delay-and-sum beamformer and reconstructed back to
time-domain.

3. SPATIAL DICTIONARY LEARNING

In a complex acoustic scene, multiple sources can be active and over-
lapping in some time instants. However, it is reasonable to assume
that in a sufficient number of STFT frames only one source is dom-
inant. Then, each frame is used to adapt the mixing system related
to the spatial location of the dominating source. The learning is
performed through a weighted Natural Gradient (wNG) similar to
that proposed in [13]. First, we indicate with Ho

m(k) the discrete
frequency response between the location o and the microphone m,
where k is the frequency bin index according to the given STFT
analysis. A normalized vectorial representation of the response is
obtained as

do =

[
Ho

2 (1)H
o
1 (1)

∗

|Ho
2 (1)H

o
1 (1)

∗| , · · · ,
Ho

2 (Nbins)H
o
1 (Nbins)

∗

|Ho
2 (Nbins)Ho

1 (Nbins)∗|

]T
(1)

where Nbins indicates the total number of discrete frequency bins.
The vector do gives a compact representation of the inter-channel
phase difference, in the complex domain, which is different for each
location o and reverberation conditions. If the room geometry and
microphone array location is available, the spatial dictionary can be
initialized using simulated frequency responses, e.g. through the im-
age simulation method (ISM) [14][15]. In the simplest case where
this information is not available the dictionary can be initialized us-
ing anechoic frequency response models describing the propagation
of a source in a given direction as

Ho
1 (k) = 1, Ho

2 (k) = e2πfk
d×sinθo

c (2)

where fk indicates the frequency associated to the bin k, d is the
microphone distance, c is the sound speed and θo is the angle of the
source at the o-th location, with the respect to the broadside array di-
rection. The mixing matrices associated to each location o, describ-
ing the acoustic propagation at the frequency bin k, are initialized
as

Ĥo(k) =

[
1 0

Ho
2 (k) 1

]
, ∀o. (3)

Similarly to the atom definition, each frame is represented as

Rl =

[
X2(1, l)X1(1, l)

∗

|X2(1, l)X1(1, l)∗|
, · · · , X2(Nbins, l)X1(Nbins, l)

∗

|X2(Nbins, l)X1(Nbins, l)∗|

]T

(4)
For each frame we select the atom in the spatial dictionary best pro-
jecting with the observed frame l

õ = argmax
o

Pr(o, l), Pr(o, l) = |(do)∗ Rl|, (5)

where ∗ indicates the complex transpose, and normalize the respec-
tive projection as

Pr(õ, l) =
Pr(õ, l)− Prmin

õ

Prmax
õ − Prmin

õ

(6)

where Prmin
õ and Prmax

õ are the minimum and maximum projection
of the atom õ with all the previously observed data frames. The
normalized projection is then a weight with values ranging from 0 to
1, indicating the dominance of the source at the location õ and at the
frame l.

A weighting matrix Dõ(l) is defined as a diagonal matrix with
the first element (i.e. p11) equal to Pr(õ, l) and the second element
(i.e. p22) set to 1−Pr(õ, l). Then, according to the weighted NG, for
each frame l, the atom selected in (5) and its corresponding mixing
system is updated as follows

Y(k, l) = [Ĥõ(k)]−1X(k, l) (7)

∆H(k) = [Ĥõ(k)(I− Φ(Y(k, l))Y(k, l)H)]Dõ(l) (8)

Ĥõ(k) = Ĥõ(k)− η∆H(k) (9)

dõ =

[
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õ
11(Nbins)

∗

|Ĥ õ
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]T

(10)
Y(k, l) is the vector of the demixed signal [Y1(k, l) Y2(k, l)]

T ,
where Ĥ õ

mn(k) is the generic element of the matrix Ĥõ(k), η is the
adaptation step-size, I the identity matrix and Φ(·) is a non-linearity.
In practice, the weighting matrix induces the gradient to update the
first column of Ĥõ(k) when the source located in õ is dominant.
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3.1. Source selection

The learned dictionary gives a spatial representation of the mixing
parameters related to different source locations. However, it is also
required a criterion to select the correct atom in order to selectively
extract a given source of interest. In this work we select the atom
having the maximum cumulative projection over all the frames of a
sentence, but restricting the search only to atoms related to a given
source direction range.

4. CONSTRAINED SPATIAL FILTERING

The spatial filtering can be applied with any kind of ICA adapta-
tion, constrained with the mixing system selected from the dictio-
nary. Here we use a constrained weighted NG where the adaptation
is applied as follow

X̃(k, l) = [Ĥot(k)]−1X(k, l) (11)

Y(k, l) = [H(k)]−1X̃(k, l) (12)

∆H(k) = [H(k)(I− Φ(Y(k, l))Y(k, l)H)]D(l) (13)

H(k) = H(k)− η∆H(k) (14)

W(k) = [H(k)]−1[Ĥot(k)]−1 (15)

with Ĥot(k) indicating the matrix selected from the dictionary re-
lated to the location of the target source, W(k) is the full demixing
matrix applied to the input data and D(l) is the weighting matrix.
The matrix D(l) in this case defines the adaptation rate of the param-
eter related to the target source and to the noise sources and should
be defined according to the expected scenario. In CHiME-like sce-
narios, the mixing systems of target and noise sources have different
characteristics. The main speaker location can be considered rela-
tively static, i.e. the speaker does not change location during the
interaction. On the other hand, the noise sources can quickly move
in the space and then the adaptation must quickly track variations of
their mixing conditions. If the first element on the main diagonal of
D(l) is set to zero (i.e. p11 = 0) the target mixing parameters will
remain unaltered during the adaptation. This is acceptable if the tar-
get source is perfectly static since the mixing parameters estimated
in the previous stage are enough accurate to describe the static part
of the channel frequency response. However, if the target source is
expected to do small movements, p11 should be > 0 in order to allow
a certain degree of adaptation and compensate any mismatch. Simi-
larly, the second diagonal element, p22 must be set to a higher value
in order to better track fast variations in the noise mixing parameters.
In general, p11 and p22 should be proportional to the probability of
speech and noise presence, which in this work are approximated with
Pr(ot, l) and (1 − Pr(ot, l)). In order to be more robust to errors
in Pr(ot, l), in this work we generate the weights through non-linear
transformation of Pr(ot, l):

• track1: p11 = 1 − tanh[α × (1 − Pr(ot, l))], p22 = 1 −
tanh[α× Pr(ot, l)]

• track2: p11 = 0, p22 = 1− tanh[α× Pr(ot, l)]

where α is a parameter defining the sensitivity of the weight to the
target/noise presence. Note, while p22 is formulated in the same way
for both Track1 and Track2, p11 is defined differently in order to bet-
ter fit the characteristic of each track. In Track2 the speaker is static
and the re-adaptation of the target mixing system is not necessary.
On the other hand, in Track1 the target speaker is expected to do
small movements and a certain degree of adaptation is required.

4.1. Forward-Backward on-line tracking

In common on-line adaptations filters are updated with the incom-
ing data, starting from values estimated in the previous time instant.
On the other hand, if multiple time frames are known beforehand,
batch adaptations generally lead to more accurate results, on condi-
tions that the mixing system remains stationary for the entire batch of
analysis. However, in scenarios with highly non-stationary mixing
conditions, such as those simulated in the CHiME challenge, batch
adaptations are not appropriated since a continuous tracking of vari-
ations in the mixing parameters is necessary to recover the source
signals with small distortion. An on-line adaptation would better
adapt to local variations but it will not exploit future observations as
done by batch processing.

In order to overcome this limitation, in this work we combine
the advantages of on-line and batch adaptations using a backward-
forward (BF) tracking on-line adaptation. For each noisy sentence of
the CHiME datasets the adaptations in both ”spatial dictionary learn-
ing” and ”spatial filtering” stages, are iterated alternatively in the
forward and backward direction over all the available data frames.
This procedure implicitly constrains the overall adaptation to opti-
mize the estimated filters over all the available data, without mak-
ing any strong assumption of long-term stationarity as for traditional
batch ICA optimizations.

An approximate pseudo-code description of the procedure is ex-
plained as follows:

———————————————————————————
Initialize l=0;d=1;
for NBF

while [(l < Nl) and (d==1)] or [(l > 0) and (d==-1)]
set current frame to l=l+d;
Apply the spatial dictionary learning as in (7)-(10)
Apply the constrained spatial filtering as in (11)-(15)
endwhile

if (d==-1)
d=1 (set forward tracking)

else
d=-1 (set backward tracking)

end
endfor
———————————————————————————
where NBF is the number of BF tracking iterations and Nl is the
total number of STFT frames. The BF procedure is run with a redun-
dant number of iterations but with a small adaptation step-size. This
approach improves the robustness of the parameters tracking against
strong noise localized in some frames, and eventually converges to
a globally optimized solution. For each frame, after the adaptation
of the spatial filtering procedure the Minimal Distortion Principle
(MDP) [12] is used to estimate the multichannel image of target
source and noise signal (for more details see [5]). Finally, the STFT
signals are reconstructed back to time-domain through a weighted
Overlap-and-add (WOLA) using the Griffin and Lim’s method [16].
It is worth noting that the reconstruction to time-domain is required
because the spectral filtering operates at different time-frequency
resolution, i.e. a fine temporal resolution is necessary to capture the
non-stationarity of the source signals.

5. SPECTRAL FILTERING

For best performance, the enhanced target signals are not directly
fed to the ASR but used to control a further spectral processing stage
applied to each input channel. In this stage the recorded microphone
signals are filtered with a spectral enhancement method operating in
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a time-frequency resolution domain, different from that used for the
constrained spatial filtering. In fact, the spectral filtering requires a
higher temporal resolution domain in order to be consistent with the
high non-stationarity of the recovered audio signals. On the other
hand, the spatial filtering requires a high frequency resolution in or-
der to approximate the mixing process from convolutive to linear.

In this work we adopted an adaptive Wiener filter applied sep-
arately to each channel of the recovered signals. Starting from the
matrix W(k) estimated in (15) (in each frame l), we indicate with
Y m
m̃ (k, l) the estimate of the m-th source signal recorded at the m̃-

th microphone, obtained applying the MDP [12]. Indicating with
P t
m̃(k, l) and Pn

m̃(k, l) the Power Spectral Density (PSD) of the tar-
get and noise at the m̃-th microphone and frames l, the image of the
target source signal at the m̃-th microphones can be estimated as

S1
m̃(k, l) =

P t
m̃(k, l)

P t
m̃(k, l) + Pn

m̃(k, l)
Xm̃(k, l). (16)

Pn
m̃(k, l) can be approximated with |Y 2

m̃(k, l)|2. Indeed, if the
selected atom well represents the mixing parameters of the target
source, the target signal is perfectly canceled from the noise output.
In contrast, P t

m̃(k, l) cannot be directly derived from |Y 1
m̃(k, l)|2

because in the general case of a number of sources N > 2, it is not
possible to spatially suppress all the noise from the target outputs
with a 2 × 2 demixing system. A possible estimation for P t

m̃(k, l)
is obtained as

e(k, l) = |Y 1
m̃(k, l)|− g(k)× |Y 2

m̃(k, l)| (17)

P t
m̃(k, l) = max(|e(k, l)|2, 0) (18)

where g(k) is a gain estimated in order to minimize the Mean
Square Error (MSE) E[|e(k, l)|2]. The gain g(k) can be adapted
on-line with a Normalized Least Mean Square algorithm (NLMS).
The adaptation has the goal to remove the residual noise from the
target signal, correlated to the estimated noise signal. However, if
a residual component of the target is still present in Y 2

m̃(k, l) the
filtering may result in an unwanted attenuation of the target signal.
In order to reduce this distortion, filters are updated only when
the target signal is sufficiently smaller than the output signal, e.g.
|Y 1

m̃(k, l)| < β × |Y 2
m̃(k, l)|.

As for the constrained spatial filtering, the enhanced frequency-
domain signals are reconstructed back to time-domain through a
weighted Overlap-and-add (WOLA) using the Griffin and Lim’s
method [16]. Since for the recognition task only a single signal
is required, the channels are combined together with a delay&sum
beamformer.

6. ASR BACK-END

6.1. Baseline ASR

In the experiments the short-term spectral analysis is performed with
windows of 25ms and step-size of 10ms. Mel Frequency Cepstral
Coefficients (MFCCs) and log-energy plus the corresponding first
and second order time derivatives are combined in a 39-size feature
vector. Cepstral Mean Normalizations is also applied.

The recognition system for the Track 1 task is based on whole-
word HMMs with topology described in [17], trained with the
reverberated Grid training data. 34 speaker-dependent (SD) models
are derived. The sentences are sequences of the form:[command]
[color][preposition][letter][digit][adverb]. Performance is mea-
sured as accuracy of two keywords for utterance (letter and digit).

The baseline ASR back-end for Track2 is based on a popular
setup [18]: the acoustic model comprises 39 phones plus two silence

models (silence and short pause, tied together); the topology is 3-
states left-to-right with no skips. Each phone HMM is represented
by a GMM with 8 components while the silence uses 16 Gaussians.
The provided training scripts starts from a clean acoustic model with
some re-estimations steps. The language model is build from the
standard 5K non-verbalized closed bigram provided in the original
WSJ distribution.

A second set of experiments are carried out with an alternative
feature set based on gammatone analysis in order to confirm the ef-
fectiveness shown in the first CHiME challenge.

The gammatone filters are linear approximation of physiologi-
cally motivated processing performed by the cochlea; the filter center
frequencies and bandwidths are derived from the filter’s Equivalent
Rectangular Bandwidth (ERB) as detailed in [19]. Additionally a
Shifted Log is used as the (non-linear) compression function for the
spectral representation:

Y = log10(X + α0) (19)

where α0 is a parameter that controls a threshold in the log function
and simulates the human auditory rate-intensity curve. The 32-band
energies are then decorrelated using the standard Discrete Cosine
Transform to obtain a 13-dimensional observation vector, extended,
as for the reference Mel feature, with first and second derivatives for
a total of 39 components.

6.2. Sparsity based Acoustic Model Compensation

To further increase the robustness, the acoustic models of an ASR
system can be dynamically compensated for the uncertainty of the
incoming signal. In the context of multi-channel signal processing,
the residual uncertainty after signal processing in STFT domain can
be used for this purpose. An uncertain signal description in STFT
domain can be related to an uncertain signal description in MFCC or
other feature domains by using uncertainty propagation [10]. Once
the uncertainty in MFCC domain has been estimated, observation
uncertainty techniques such as uncertainty decoding and modified
imputation can be used to compensate the acoustic models or the
features. In [20] a measure of the residual uncertainty after beam-
forming and Wiener post-processing was attained from the residual
MSE [20]. One disadvantage of this approach is that the MSE does
not capture errors in the estimation of the target and noise PSDs. Fur-
thermore, MSE propagation relies upon the assumption of additivity
of target and noise, while the assumption of sparseness, either target
or noise are active, often fits better source separation scenarios.

Here, we develop an uncertainty model in STFT domain based
on the assumption of sparsity. We also briefly describe how to prop-
agate such a model into STFT domain. Under the assumption of
sparsity, each time-frequency bin of the observed signal Xm̃(k, l)
contains either target or noise. In real world situations it is how-
ever impossible to determine which of the two signal is active with
absolute certainty. In this work we model such uncertainty in follow-
ing form. We consider each time-frequency bin of the target signal
Sm̃(k, l) as an independent random variable with two possible out-
comes. Either target is active and thus |Sm̃(k, l)| = |Xm̃(k, l)| or
noise is active and thus |Sm̃(k, l)| = 0. The amplitude of the STFT
of such an uncertain signal is therefore described as a matrix of inde-
pendent scaled Bernoulli variables. This model is thus different from
the complex Gaussian uncertain STFT model used in [20] and other
works, and the conventional propagation formulas do not apply.

We can however make use of the transformations involved in the
MFCC to approximate uncertainty propagation for this model. To
attain this we approximate the large sum of scaled Bernoulli random
variables at the Mel-filterbank
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Mjl =
K∑

k=1

Wjk|Sm̃(k, l)| (20)

by a continuous log-normal distribution as in [10, Sec. 6.3.3],
where Wjk are the Mel-filterbank weights. As a result of this as-
sumption, the distribution of the MFCC is Gaussian and only mean
and variance of the amplitude at each time frequency bin Sm̃(k, l)
are needed to compute propagation. The only missing element is the
probability of target activity p̂(k, l), which in this case is estimated
from the Wiener gain of (16) as

p̂(k, l) ≈
√

P t
m̃(k, l)

√
P t
m̃(k, l) +

√
Pn
m̃(k, l)

(21)

Note that here an amplitude based gain, rather than a conven-
tional Wiener gain, is used since it led to better results. In practice
any binary mask could be used.

The Variance of each uncertain MFCC is then obtained from
the log-normal assumption and the mean and variance of a scaled
Bernulli distribution. This is given by

Σs
iil ≈

J∑

j=1

J∑

j′=1

TijTij′

· log
(∑K

k=1 WjkWj′kΣ
|S|
m̃ (k, l)

M̄jlM̄jil
+ 1

)
(22)

where i is the DCT index, Tij are the DCT coefficients and

M̄1
jl =

K∑

k=1

Wjkp̂(k, l)|Xm̃(k, l)| (23)

are the Mel-filterbank features of the spectrum filtered by (21).
This is also equivalent to the expected Mel-filterbank features for
the uncertainty model used. The variance of the amplitude of each
uncertain Fourier coefficient can be determined from the variance of
a Bernoulli random variable as

Σ|S|
m̃ (k, l) = p̂(k, l)

(
1− p̂(k, l)

)
|Xm̃(k, l)|2. (24)

This measure of uncertainty is maximal when p̂(k, l) = 0.5, that
is when the PSDs of target and noise are equal. It is also minimal
when one of the two PSDs is zero, thus penalizing the violation of
the sparsity assumption with a higher uncertainty. Consequently this
measure takes into consideration the errors in PSD estimation in a
direct way, unlike MSE based estimation. It should be noted that the
propagation of an uncertain spectrum using the log-normal assump-
tion also implies a bias compensation of the mean of the MFCCs [10,
Sec. 6.3.3]. This compensation led however to slightly worse results
and was ignored. This could be due to the limited validity of the
log-normal assumption for the scaled Bernoulli uncertainty model.

It should also be noted that measures of uncertainty based on the
signal processing stage perform worse when used in noise matched
conditions. The rationale for this is that these measures relate to
how different is the estimated spectrum from the original clean sig-
nal. Since in noise matched conditions the models are trained with
noisy data, distortions that would lead to low or medium uncertain-
ties have been probably learned by the model and do not need to be
compensated for. Uncertainty is therefore over-estimated in those
cases.

In the case of sparsity based uncertainty, the artifacts caused by
PSD estimation errors are learned from the training data and thus

General parameters
fs=16kHz, STFT window = Hamming
Φ(x) = tanh(10 · |x|) exp(jφ(x))

BFiter=2 (with-mem), BFiter=10 (no-mem)
Spatial dictionary learning

STFT frame length/shift = 4096/256 samples
Dictionary size = 60 atoms, η = 0.01

Constrained spatial filtering
STFT frame length/shift = 4096/256 samples

η = 0.05, α = 2

Spectral filtering
STFT frame length/shift = 1028/128 samples

NLMS step-size adaptation µ = 0.02, β = 1.2

Table 1. Summary of parameters used in the BSE algorithm

compensating them yields no improvement or a performance de-
crease. Consequently results are only provided for the rever test
conditions, where the models were trained with reverberant speech.

7. PERFORMANCE EVALUATION

7.1. BSE parameter settings

The parameters of the BSE processing are summarized in Table 1
and were optimized only using the development dataset. For the
evaluation of the ASR task we also considered two different opera-
tive modalities named as with-mem and no-mem. The first refers to
the processing with memory over the entire dataset, i.e. the estimated
spatial dictionary is sequentially propagated during the processing of
the mixtures of each dataset. This is motivated by the fact that the
spatial dictionary gives an average representation of the environmen-
tal acoustic, which should not change considerably over time. On
the other hand, the second modality no-mem refers to the processing
without memory, i.e. the spatial dictionary is re-initialized for each
processed mixture.

7.2. Track 1

This section presents the results for Track 1 reported as (keyword)
recognition accuracies. Besides the reverberated (rever) and noisy
(noisy) acoustic models (AM) already available in the CHiME
datasets, a new set of models have been obtained by filtering the
noisy training dataset with the same BSE processing. We refer
to this set of models with BSE-matched, i.e. the ASR is directly
matched with the BSE enhancement. Table 2 summarizes the setup
adopted for acoustic model training.

id training dataset BSE processing
rever reverberated no
noisy noisy no
bse-matched noisy yes

Table 2. The sets used for AM training.

Table 3 reports the results obtained with the baseline ASR and
the provided rever AM. Additional results are provided in Table 4,
which shows the accuracies obtained when the AM training proce-
dure is modified as described in [5] (we refer to it as a modified
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SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
dev 32.08 36.33 50.33 64.00 75.08 83.50 56.9
test 32.17 38.33 52.08 62.67 76.08 83.83 57.5

Table 3. Keyword recognition accuracies of unprocessed test and
dev sets of Track 1, obtained with the ASR baseline and using rever
AM.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
dev 46.92 49.00 60.00 73.33 81.33 89.42 66.7
test 43.58 49.42 63.42 72.00 82.75 89.67 66.8

Table 4. Keyword recognition accuracies of unprocessed test and
dev sets of Track 1, obtained using rever data and the ASR baseline
with the modified training.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 53.25 56.92 67.33 78.08 84.33 88.58 71.4
with-mem 55.67 61.25 69.75 81.25 86.33 91.58 74.3
no-mem 51.42 56.75 67.75 76.83 84.58 87.75 70.9
with-mem 53.75 60.25 74.08 81.92 87.67 90.33 74.7

Table 5. Keyword recognition accuracies of BSE processed dev/test
sets, obtained using rever data and the ASR baseline with the modi-
fied training.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 68.67 71.08 78.50 84.42 87.25 89.50 79.9
with-mem 68.75 71.50 79.42 86.08 87.83 89.42 80.5
no-mem 66.58 74.08 80.42 85.00 86.17 89.33 80.3
with-mem 66.67 70.83 80.17 84.67 88.42 89.92 80.1

Table 6. Keyword recognition accuracies of BSE processed dev/test
sets, obtained using bse-matched data and the ASR baseline with the
modified training.

training). In both the cases no BSE processing was applied to the
recorded mixtures.

While the BSE already produces a sensible improvement with
the rever models (see Tables 5) , applying the processing also dur-
ing training provides more robust models as demonstrated by Table
6. Indeed, the best performance is achieved in case of bse-matched
training: the corresponding AM compensates the residual distortions
introduced by the BSE processing and learned in the training phase.

Finally, Table 7 reports the performance for the test set, obtained
with an alternative front-end based on gammatone analysis, proving
the advantages of using robust features for further mitigate the effect
of residual distortion not learned in the training. For the sake of
completeness we also report in Table 8 the performance obtained
using the original noisy AM models noisy, i.e. obtained from the
noisy training dataset but not processed by the BSE.

7.3. Track 2

In this section a wide analysis of recognition performance is pre-
sented reporting the results on the two sets (dev and test). Note, to
be compliant with the official metric used in CHIME for this track,
the performance are evaluated through the Word Error Rates (%). As
for Track 1, the two provided AMs (rever and noisy) result from two

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 69.17 74.08 81.25 87.08 89.67 90.50 82.0
with-mem 69.67 73.50 81.67 86.17 88.67 89.33 81.5
no-mem 70.00 75.42 83.75 87.00 90.08 91.33 82.9
with-mem 69.00 77.50 83.50 87.42 90.42 91.33 83.2

Table 7. Keyword recognition accuracies of BSE processed dev/test
sets, obtained using bse-matched data and the ASR baseline with
Gammatone front-end and the modified training.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 69.67 74.50 80.92 84.75 88.08 88.42 81.1
with-mem 69.58 74.67 81.17 87.33 89.17 88.92 81.8
no-mem 69.92 75.25 82.17 85.00 87.83 88.75 81.5
with-mem 68.67 75.17 83.67 86.50 88.42 89.67 82.0

Table 8. Keyword recognition accuracies of BSE processed dev/test
sets, obtained using noisy data and the ASR baseline with Gamma-
tone front-end and the modified training.

different training corpora: the rever AM derives from the purely re-
verberated signals while noisy AM exploits the corresponding set of
signals with the additional superposition of the recorded background
noise. Similarly to Track 1, the bse-matched models are derived by
filtering the noisy training set with the corresponding BSE process-
ing.

7.3.1. Baseline ASR

Tables 9 and 10 compare the baseline results (no processing) with
WERs obtained when the BSE processing algorithms is applied, (for
both no-mem and with-mem processing modalities)

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
baseline 86.3 82.8 76.1 71.4 63.0 55.9 72.6
no-mem 75.8 67.7 59.4 52.5 44.9 40.7 56.8
with-mem 64.0 57.0 50.4 45.8 39.7 36.3 48.9
baseline 88.0 83.2 78.1 71.9 65.2 55.9 73.7
no-mem 74.4 67.2 58.0 49.9 44.6 38.8 55.5
with-mem 64.2 56.6 50.6 44.6 40.5 35.7 48.7

Table 9. Word Error Rates on Track 2 CHiME dev/test sets with dif-
ferent processing configurations (MFCC front-end and rever AM).

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
baseline 73.2 67.4 59.9 55.7 49.1 44.3 58.3
no-mem 67.2 60.0 52.9 48.5 44.2 41.5 52.4
with-mem 57.5 51.0 46.9 43.3 39.8 38.2 46.1
baseline 70.4 63.1 58.4 51.1 45.3 41.7 55.0
no-mem 63.1 55.6 49.2 44.4 40.5 37.1 48.3
with-mem 55.0 49.3 43.9 40.7 37.7 36.3 43.8

Table 10. Word Error Rates on Track 2 CHiME dev/test sets with
MFCC front-end, noisy AM and BSE processing.

As for Track 1, results shown in Tables 9-12 demonstrate the
advantages of the BSE processing, especially when combined with
noisy matched training. The introduction of the gammatone-based
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SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 60.6 51.9 44.7 41.1 36.0 33.5 44.6
with-mem 48.2 42.6 37.4 33.1 31.3 29.3 37.0
no-mem 56.4 48.3 41.1 35.5 32.7 29.6 40.6
with-mem 45.2 40.1 35.0 32.1 28.9 27.2 34.8

Table 11. Word Error Rates on Track 2 CHiME dev/test sets for
bse-matched AM.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 57.2 47.8 39.4 34.4 30.1 28.1 39.5
with-mem 43.3 37.5 32.3 28.8 26.0 25.4 33.2
no-mem 54.3 44.7 39.2 32.5 29.8 25.3 37.6
with-mem 42.2 38.4 32.7 29.2 26.9 23.7 32.2

Table 12. Word Error Rates on Track 2 CHiME dev/test sets with
a different processing configuration (Gammatone front-end and bse-
matched AM).

front-end provides an additional gain, confirming our past results
[5]. It is worth noting that for this new front-end the corresponding
AM is trained on the same signals used for the provided rever and
noise AM but with a different procedure: indeed, a complete training
step is directly applied to the reverberated or noisy signals (i.e. no
re-estimation from a clean initial model).

7.3.2. Sparsity based Acoustic Model Compensation

Sparsity based acoustic model compensation with the two BSE vari-
ants, with and without memory, was tested when using the rever
models. The setup differs slightly with respect to the setup ex-
plained in Section 6.1. These differences can be summarized as
follows. First, the log-energy of the conventional MFCC front-end
was changed to the 0th cepstral coefficient and the filter gains where
computed from amplitudes as indicated in (21). A new seed model
was therefore trained for this new setup using the same WSJ0 recipe
as the one provided in the challenge tool-set and the reverberated
data. The only variation in the acoustic model was the use of word-
internal rather than cross-word phonemes.

In addition to this, some additional changes apply to the setup
but only when propagating uncertainty. First, the propagation
through the final overlap and add step in Fig. 1 was ignored since it
is computationally very expensive. For this purpose, the enhanced
spectrum was directly fed to the feature extraction process and
thus the number of frequency bins at the signal processing stage
was reduced to 512. This led to a small mismatch between the
non-propagated and the propagated features. The improvement at-
tained by using dynamic compensation is in fact higher than the
one reported here when compared to the same feature extraction
configuration for non-propagated features.

Finally, it has to be taken into account that in the BSE, a differ-
ent Wiener filter is applied to each channel by separate followed by a
delay and sum. The random variable describing the uncertain spec-
trum is thus categorical and the approach explained in Section 7.3.2
is a simplification, although the same principle applies. Regarding
dynamic compensation, conventional front-end uncertainty propaga-
tion was used [21]. It should be noted that modified imputation [22]
did not yield any improvements.

Tables 13 and 14 display the results for the two BSE variants.
As it can be observed, the use of sparsity based uncertainty com-
pensation consistently improves BSE for all SNRs and for both BSE

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 70.9 61.5 53.3 45.0 40.6 34.7 51.0
no-mem+UD 67.3 57.5 49.1 42.4 38.5 32.7 47.9
with-mem 59.0 53.0 45.5 39.6 36.6 31.5 44.2
with-mem+UD 56.7 50.7 43.1 37.7 35.2 30.6 42.3

Table 13. Word Error Rates on task2 CHiME test set with second
MFCC front-end, rever word-internal AM and BSE processing with-
out and with sparsity based uncertainty decoding (+UD).

SNR -6dB -3dB 0 dB 3dB 6dB 9dB avg
no-mem 71.5 62.6 52.9 46.6 40.1 35.6 51.6
no-mem+UD 69.2 60.4 50.3 45.1 39.0 34.4 49.7
with-mem 61.0 52.5 45.0 40.0 35.5 32.1 44.4
with-mem+UD 58.7 50.6 43.5 39.0 34.2 30.8 42.8

Table 14. Word Error Rates on CHiME dev set with second MFCC
front-end, rever word-internal AM and BSE processing without and
with sparsity based uncertainty decoding (+UD).

variants. Although not reported here, similar experiments using con-
ventional MSE based uncertainty compensation produced little or no
improvements in comparison. As explained in 7.3.2 this is mostly
due to the fact that, unlike sparsity based uncertainty, MSE based
uncertainty assumes no errors in the estimation of the spectral fil-
tering parameters. Also, no improvements were attained in bse-
matched conditions as the artifacts caused by residual noise were
already learned by the model.

8. CONCLUDING REMARKS

In this article we revised and extended the multichannel Blind
Source Extraction framework proposed in [5] in order to deal
with both Track 1 and Track 2 of the 2nd CHiME challenge. A
novel unsupervised spatial dictionary learning, combined with a
backward-forward constrained on-line spatial filtering, allow an ac-
curate enhancement of a localized (either static or moving) speech
source in presence of real-world non-stationary noise and reverber-
ation conditions. The capabilities of the BSE was demonstrated
when used as pre-processing stage of a robust ASR system. It was
shown that when BSE is combined with robust feature analysis
and matched training, it produces a sensible improvement also for
difficult medium vocabulary recognition tasks such as Track 2 of
the 2nd CHiME Challenge. Furthermore, it was shown that when
the training set cannot be matched with the BSE processing, the
use of uncertainty decoding is able to sensibly improve the overall
performance.

9. REFERENCES

[1] W. Kellermann, “Some current challenges in multichannel
acoustic signal processing,” Journal of the Acoustical Society
of America, vol. 120, no. 5, pp. 3177–3178, 2006.

[2] M. Wölfel and J. McDonough, Distant Speech Recognition.
John Wiley and Sons, 2009.

[3] Y. Takahashi, T. Takatani, K. Osako, H. Saruwatari, and
K. Shikano, “Blind spatial subtraction array for speech en-
hancement in noisy environment,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 17, no. 4, pp.
650 –664, May 2009.



38

[4] Z. Koldovsky, J. Malek, J. Nouza, and M. Balik, “Chime data
separation based on target signal cancellation and noise mask-
ing,” in Proceedings of CHIME, Florence, Italy, 2011.

[5] F. Nesta and M. Matassoni, “Blind source extraction for robust
speech recognition in multisource noisy environments,” Com-
puter Speech and Language, 2012.

[6] R. Maas, A. Schwarz, Y. Zheng, K. Reindl, S. Meier, A. Sehr,
and W. Kellermann, “A two-channel acoustic front-end for ro-
bust automatic speech recognition in noisy and reverberant en-
vironments,” in Proceedings of CHIME, Florence, Italy, 2011.

[7] H. K. Maganti and M. Matassoni, “An auditory based modu-
lation spectral feature for reverberant speech recognition,” in
Proceedings of Interspeech, Makuhari, Japan, 2010, pp. 570–
573.

[8] P. Moreno, B. Raj, and R. Stern, “A vector taylor series ap-
proach for environment-independent speech recognition,” in
Proceedings of ICASSP, vol. 2, may 1996, pp. 733–736.

[9] J. Du and Q. Huo, “A feature compensation approach using
high-order vector taylor series approximation of an explicit dis-
tortion model for noisy speech recognition,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 19,
no. 8, pp. 2285 –2293, nov. 2011.

[10] R. F. Astudillo, “Integration of short-time fourier domain
speech enhancement and observation uncertainty techniques
for robust automatic speech recognition,” Ph.D. dissertation,
Technical University Berlin, 2010.

[11] E. Vincent, J. Barker, S. Watanabe, J. L. Roux, F. Nesta, and
M. Matassoni, “The second CHiME speech separation and
recognition challenge: Datasets, tasks and baselines,” in In
Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Vancouver, 2013.

[12] K. Matsuoka and S. Nakashima, “Minimal distortion principle
for blind source separation,” in Proceedings of International
Symposium on ICA and Blind Signal Separation, San Diego,
CA, USA, Dec. 2001.

[13] F. Nesta and M. Omologo, “Convolutive underdetermined
source separation through weighted interleaved ICA and
spatio-temporal correlation,” in Proceedings LVA/ICA, Mar
2012.

[14] M. Fakhry and F. Nesta, “Underdetermined source detection
and separation using a normalized multichannel spatial dictio-
nary,” Acoustic Signal Enhancement; Proceedings of IWAENC
2012; International Workshop on, pp. 1 –4, sept. 2012.

[15] F. Nesta and M. Fakhry, “Underdetermined source detection
and separation using a normalized multichannel spatial dictio-
nary,” in In Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, 2013.

[16] D. Griffin and J. Lim, “Signal estimation from modified short-
time Fourier transform,” Acoustics, Speech and Signal Pro-
cessing, IEEE Transactions on, vol. 32, no. 2, pp. 236–243,
1984.

[17] M. Cooke, J. R. Hershey, and S. J. Rennie, “Monaural speech
separation and recognition challenge,” Computer Speech and
Language, vol. 24, pp. 1–15, 2010.

[18] K. Vertanen, “Baseline wsj acoustic models for htk and
sphinx: Training recipes and recognition experiments,” 2006.
[Online]. Available: http://www.keithv.com/pub/baselinewsj/

[19] M. Slaney, “An efficient implementation of the patterson
holdsworth auditory filterbank,” Apple Computers, Perception
Group, Tech. Rep., 1993.

[20] R. F. Astudillo, D. Kolossa, A. Abad, S. Zeiler, R. Saeidi,
P. Mowlaee, J. P. da S. Neto, and R. Martin, “Integration
of beamforming and uncertainty-of-observation techniques
for robust asr in multi-source environments,” Computer
Speech & Language, 2012. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0885230812000575

[21] J. Droppo, A. Acero, and L. Deng, “Uncertainty decoding with
splice for noise robust speech recognition,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP)., vol. 1, 2002, pp. I–57–I–60 vol.1.

[22] D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and
robust recognition of noisy, convolutive speech mixtures using
time-frequency masking and missing data techniques,” in Proc.
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), Oct. 2005, pp. 82–85.


